ارزیابی تأثیر پیشپردازش متغیرهای ورودی به مدل ماشین بردار پشتیبان به روش آزمون گاما بهمنظور پیشبینی حجم رسوب معلق
Authors
Abstract:
هدف از این مطالعه بررسی تأثیر پیش پردازش متغیرهای ورودی به روش آزمون گاما بر عملکرد مدل ماشین بردار پشتیبان جهت پیشبینی حجم رسوبات معلق رودخانه دویرج، واقع در استان ایلام، برای دورة ۱۹۹۴ـ ۲۰۰۵ است. دبی جریان و بارندگی ورودی مدل و دبی رسوب معلقْ خروجی مدل درنظر گرفته شد. همچنین، طول دورة آموزش مدل با استفاده از آزمون گاما (Gamma Test (GT)) مشخص شد. سپس، به منظور بررسی تأثیر پیش پردازش متغیرهای ورودی بر عملکرد مدل، رسوب معلق با استفاده از مدل SVM، که هیچگونه پیشپردازشی بر روی متغیرهای ورودی آن صورت نگرفته بود، پیشبینی شد و نتایج با یکدیگر مقایسه گردید. نتایج نشان داد عملکرد مدل GT-SVM در مرحله آزمون با حداقل RMSE برابر با 96/0 تن در روز و حداکثر ضریب R2 برابر با 98/0 بین مقادیر پیشبینیشده و واقعی بهتر از عملکرد مدل SVMاست.
similar resources
ارزیابی تأثیر پیش پردازش متغیرهای ورودی به مدل ماشین بردار پشتیبان به روش آزمون گاما به منظور پیش بینی حجم رسوب معلق
هدف از این مطالعه بررسی تأثیر پیش پردازش متغیرهای ورودی به روش آزمون گاما بر عملکرد مدل ماشین بردار پشتیبان جهت پیش بینی حجم رسوبات معلق رودخانه دویرج، واقع در استان ایلام، برای دورة ۱۹۹۴ ـ ۲۰۰۵ است. دبی جریان و بارندگی ورودی مدل و دبی رسوب معلقْ خروجی مدل درنظر گرفته شد. همچنین، طول دورة آموزش مدل با استفاده از آزمون گاما (gamma test (gt)) مشخص شد. سپس، به منظور بررسی تأثیر پیش پردازش متغیره...
full textارزیابی و عملکرد مدل ماشین بردار پشتیبان در تخمین رسوبات معلق رودخانه ها
همواره پدیده انتقال رسوب، بسیاری از سازه های رودخانه ای و سازه های عمرانی را تحت تأثیر قرار داده و عدم اطلاع از میزان دقیق آن خسارات بسیاری را موجب می شود .از این جهت دستیابی به روشی با دقت مناسب برای تخمین میزان بار رسوبی معلق رودخانه ها بسیار حایز اهمیت است. در این پژوهش جهت تخمین رسوبات رودخانه کاکارضا واقع در استان لرستان، از مدل ماشین بردار پشتیبان استفاده گردید و نتایج آن با برنامه ریزی ب...
full textارزیابی عملکرد روشهای مدل درختی M5 و رگرسیون بردار پشتیبان در مدلسازی رسوب معلق رودخانه
همواره پدیده انتقال رسوب، بسیاری از سازههای رودخانهای و سازههای عمرانی را تحت تاثیر قرار داده و عدم اطلاع از میزان دقیق آن خسارات بسیاری را موجب میشود. از این جهت برآورد صحیح بار رسوبی در رودخانهها از نقطه نظر رسوب، فرسایش و کنترل سیلاب بسیار حایز اهمیت است. در این تحقیق، از دو روش نوین دادهکاوی شامل مدل درختی M5 و رگرسیون بردار پشتیبان برای برآورد بار رسوبی معلق رودخانه اهرچای در مقایس...
full textاستفاده از مدل های سری زمانی، شبکه عصبی و ماشین بردار پشتیبان جهت پیش بینی دبی ورودی به سد گرگان
پیشبینی مقادیر جریان ورودی به سیستم منابع آب بهمنظور آگاهی از شرایط آینده و برنامهریزی برای تخصیص بهینه منابع آب به بخشهای مختلف از قبیل شرب، کشاورزی و صنعتی امری ضروری در مدیریت منابع آب میباشد. هدف از پژوهش حاضر پیشبینی مقادیر دبی ماهانه ورودی به سد گرگان برای آینده بود. بدین منظور از دادههای هیدرومتری ایستگاه قزاقلی با دوره آماری 47 سال و سه مدل سریزمانی، شبکه عصبی و ماشین بردار پشت...
full textتشخیص خطا به روش ماشین بردار پشتیبان
با افزایش پیچیدگی و پیشرفت سیستم های کنترلی و استفاده از آن ها در محیط ها و کاربردهای حساس، تمایل روزافزونی در زمینه تشخیص خطا ایجاد شده است. در گذشته شبکه های عصبی به عنوان ابزاری برای تشخیص مدل یا خرابی در یک سیستم به کار گرفته شده اند. اما مشکل الگوریتم بهینه سازی آن ها برای انتخاب پارامتر و کم کردن خطا در هر مرحله به جای کم کردن خطای کل مدل باعث شده است تا ماشین بردار پشتیبان جایگزین مناسبی...
15 صفحه اولآنالیز مو با استفاده از روش بینابنمایی فروشکست القایی لیزری و مدل ماشین بردار پشتیبان به منظور تشخیص اعتیاد
Along with the development of laboratory methods for diagnosing addiction, concealment ways, either physically or chemically, for creating false results have been in progress. In this research based on the Laser Induced Breakdown Spectroscopy technique (LIBS) and analyzing hair of addicted and normal people, we are proposing a new method to overcome problems in conventional methods and reduce p...
full textMy Resources
Journal title
volume 67 issue 2
pages 289- 303
publication date 2014-06-22
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023